Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity
نویسندگان
چکیده
The aim of this study was to investigate the reliability and concurrent validity of a commercially available Xsens MVN BIOMECH inertial-sensor-based motion capture system during clinically relevant functional activities. A clinician with no prior experience of motion capture technologies and an experienced clinical movement scientist each assessed 26 healthy participants within each of two sessions using a camera-based motion capture system and the MVN BIOMECH system. Participants performed overground walking, squatting, and jumping. Sessions were separated by 4 ± 3 days. Reliability was evaluated using intraclass correlation coefficient and standard error of measurement, and validity was evaluated using the coefficient of multiple correlation and the linear fit method. Day-to-day reliability was generally fair-to-excellent in all three planes for hip, knee, and ankle joint angles in all three tasks. Within-day (between-rater) reliability was fair-to-excellent in all three planes during walking and squatting, and poor-to-high during jumping. Validity was excellent in the sagittal plane for hip, knee, and ankle joint angles in all three tasks and acceptable in frontal and transverse planes in squat and jump activity across joints. Our results suggest that the MVN BIOMECH system can be used by a clinician to quantify lower-limb joint angles in clinically relevant movements.
منابع مشابه
Concurrent validity and reliability of a novel wireless inertial measurement system to assess trunk movement.
INTRODUCTION Assessment of movement dysfunctions commonly comprises trunk range of motion (ROM), movement or control impairment (MCI), repetitive movements (RM), and reposition error (RE). Inertial measurement unit (IMU)-systems could be used to quantify these movement dysfunctions in clinical settings. The aim of this study was to evaluate a novel IMU-system when assessing movement dysfunction...
متن کاملTowards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters
The purpose of this study was to assess the concurrent validity and test-retest reliability of a sensor-based gait analysis system. Eleven healthy subjects and four Parkinson's disease (PD) patients were asked to complete gait tasks whilst wearing two inertial measurement units at their feet. The extracted spatio-temporal parameters of 1166 strides were compared to those extracted from a refere...
متن کاملPrecision and Reliability Incensement of Inertial Navigation System with Rotation and Redundancy
Precision and reliability are two main performance characteristic in low-cost Inertial Navigation System(INS). Increase of precision in low-cost INS without auxiliary sensors is main challenge. Bias instability leads to position drift error in inertial navigation system. In addition, fault occurrence makes the sensor reliability is decreased. Rotation of Inertial Measurement Unit(RIMU) and use ...
متن کاملThe Applicability, Concurrent Validity and Internal Consistency Reliability of the Persian Version of the National Institutes of Health Stroke Scale (NIHSS): Evidences for Gender Differences
Background: The National Institutes of Health Stroke Scale (NIHSS) can objectively quantify the severity of stroke. However no information is available about psychometric properties and it’s applicability in the Iranian population. Objectives: The present study purposed by utilization of this instrument for neurological deficits measurement due to stroke, to determine the internal cons...
متن کاملValidity and repeatability of inertial measurement units for measuring gait parameters.
Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2018